7 research outputs found

    Fault-tolerant SMC for Takagi-Sugeno fuzzy systems with time-varying delay and actuator saturation

    No full text
    This study examines the problem of fault-tolerant sliding mode control (SMC) design subject to actuator saturation for a class of Takagi-Sugeno fuzzy systems with time-varying delay and external disturbances. Our main attention is to propose the fault-tolerant SMC such that for given any initial condition, the system trajectories are forced to reach the sliding surface within a finite time. On the basis of the SM surface and Lyapunov stability theorem, a new set of sufficient conditions in terms of linear matrix inequalities (LMIs) is established to not only guarantee the passivity and asymptotically stability of the resulting closedloop system in the designed sliding surface, but also cover the issues of actuator saturation and performance constraints. Then, the desired gain matrix of the fault-tolerant SMC is obtained in respect of the previously established LMIs such that the reachability of the predefined sliding surface is ensured. It is worth pointing out that the obtained sufficient conditions can preserve the trade-off between the maximisation of admissible upper bound of time-varying delay and enlarging the estimation about the domain of attraction for the closed-loop system. Eventually, the effectiveness and robustness of the proposed control approach are demonstrated via simulation results

    Observer and Stochastic Faulty Actuator-Based Reliable Consensus Protocol for Multiagent System

    No full text
    A nondeterministic actuator fault model-based reliable control design method is presented for the leader-following consensus of a multiagent system (MAS) subject to input time-varying delay and the nonlinear phenomenon through the observer framework. Notably, a more generalized practical actuator fault model is proposed where the faults of each actuator are assumed to occur randomly and the fault rates are characterized by stochastic variables that satisfy certain probability conditions. To trace the leader dynamics, a reliable observer-based state feedback consensus algorithm is developed for the pursuing agents. After that, in light of graph theory and the Lyapunov-Krasovskii stability theorem, the required conditions are achieved to guarantee the leader-following consensus of the considered MAS, and then the corresponding reliable controller design method is proposed. Furthermore, simulations are eventually conducted to exhibit the efficiency of the newly developed control scheme, where it is shown that the obtained conditions guarantee the consensus of the considered MAS in the case of possible actuator faults

    Fault Estimation for Mode-Dependent IT2 Fuzzy Systems with Quantized Output Signals

    No full text

    Finite-Time Nonfragile Synchronization of Stochastic Complex Dynamical Networks with Semi-Markov Switching Outer Coupling

    No full text
    The problem of robust nonfragile synchronization is investigated in this paper for a class of complex dynamical networks subject to semi-Markov jumping outer coupling, time-varying coupling delay, randomly occurring gain variation, and stochastic noise over a desired finite-time interval. In particular, the network topology is assumed to follow a semi-Markov process such that it may switch from one to another at different instants. In this paper, the random gain variation is represented by a stochastic variable that is assumed to satisfy the Bernoulli distribution with white sequences. Based on these hypotheses and the Lyapunov-Krasovskii stability theory, a new finite-time stochastic synchronization criterion is established for the considered network in terms of linear matrix inequalities. Moreover, the control design parameters that guarantee the required criterion are computed by solving a set of linear matrix inequality constraints. An illustrative example is finally given to show the effectiveness and advantages of the developed analytical results
    corecore